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J. Phys. A :  Gen. Phys., Vol. 5, June 1972. Printed in Great Britain 

The method of characteristics in the theory of resonant or 
nonresonant nonlinear optics 

J C EJLBECK and R K BULLOUGH 
Department of Mathematics, University of Manchester Institute of Science and Technology, 
Manchester M60 lQD, UK 

MS received 20 December 1971 

Abstract. The method of characteristics is used to analyse the system of five nonlinear 
partial differential equations describing ultrashort optical pulse propagation through a 
medium of two-level atoms. Contrary to previous suggestions it is shown rigorously that 
the system is causal : no physical speeds exceed c. The method is well adapted to numerical 
integration. It can take full account of both back scattering and the effect of a surface to the 
dielectric. A number of new physical results obtained this way are briefly reported. 

1. Introduction 

It has been noted (Basov et a/ 1966, Icsevgi and Lamb 1969, Bullough 1970 to be referred 
to as I,  Bullough and Ahmad 1971 to be referred to as 11) that there are analytical solu- 
tions of the equations assumed for ultrashort ultra-intense optical pulse propagation in 
an amplifying medium of two-level atoms in which the pulse (ie group) velocity exceeds 
the velocity of light in uucuo (c). This is contrary to physical understanding and Icsevgi 
and Lamb (1969) in particular adduce physical arguments and some numerical examples 
which help to exclude the possibility. The main purpose of this note is to provide a 
rigorous proof that physically acceptable pulses cannot have such propagation speeds. 
Precisely we prove (i) causality : the current state is uniquely determined by initial 
data prescribed at  a previous time, (ii) that relevant initial data lie within the light cone 
and (iii) that every wave front penetrating from a vacuum into a medium of two-level 
atoms, resonant or not, travels inside the medium at the velocity of light in uacuo (c). 

The method we use is Riemann’s method of characteristics. The theory is set out in 
0 2 and the proof of causality follows in 0 3. This method has scarcely been used before in 
theoretical nonlinear optics ; da Costa (1970) uses characteristic theory in heuristic 
arguments for causality, and DeMartini et a1 (1967) have used characteristics in a theory 
of pulse steepening. Here we use the theory to give a fundamental analysis of optical 
pulse propagation ; in 0 4 we comment by example on the theory of optical shocks and in 
0 5 we consider the proper posing of initial conditions. In 0 6 we indicate briefly how the 
method may be used for direct numerical integration of the exact equations for a smooth 
dielectric of two-level atoms with a boundary. 

2. Characteristic theory of the nonlinear optics equations 

Because characteristics theory has received little application in quantum optics, we shall 
first define what we mean by the characteristics of a system of partial differential equations 
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(PDE): we use the analysis of Courant and Lax (Courant and Lax 1949, Forsythe and 
Wasow 1960, Ames 1969). In general any set of higher order partial differential equations 
in two independent variables z ,  t can be rewritten, with the aid ofsupplementary unknown 
functions, as a set of first order PDE in the 'quasilinear' form (uz = au/dz, U, = &/at) 

N 

C (U%: + b'hf) + d" = 0 V =  1 ,2  ,..., N .  
i =  1 

The ui are the functions of ( z ,  t )  to be determined. The N x N square matrices avi and b" 
and the vector d' are in general functions of ( z ,  t )  and the ui. In the special case where 
aVi and b" are independent of the ui so that the nonlinearity lies in the d', the equations (1) 
are said to be semilinear. 

In quasilinear form each equation contains a mixture of differentials of different 
functions taken in different directions in the z ,  t plane. By multiplying equation (1) by a 
suitable matrix t"' we obtain the equations in a form in which each function ui in any one 
equation appears differentiated in the same direction 

N 1 a*'i(c'u: + uf) + d*' = 0 V =  1 ,2  ,..., N .  
i 

For each equation, the differential of each ui lies along the line with equation 

The solution of this system of ordinary DE, including N arbitrary constants, defines an 
N fold family of curves: these are the characteristic curves of the system of PDE ( 1 ) .  
Generally the cy are functions of (z,  t )  and the ui: the characteristics depend on the 
particular solution, and are therefore 'movable' in this sense. But if the PDE ( 1 )  are semi- 
linear the cy depend on (z,  t )  only and the characteristics from equation (3) are 'fixed', 
that is the same for all solutions. This is fortunately the case with the system studied here. 

The two-level atom has a pseudospin representation. The simplest equations 
describing the propagation of plane EM waves in a dielectric of two-level atoms are 
(I and 11, McCall and Hahn 1969) the Bloch type equation 

rAz, 0 = Mz,  t )  x r(z, t )  (4) 

for the atoms themselves and the Maxwell wave equation 

E,,(z, t ) -  c - ~ E J z ,  t )  = 47rrc-'n exos(il(z,  t)),t ( 5 )  

which couples the atoms via their radiated fields. The components of r relate to the ele- 
ments of the density matrix for a single effective atom at z by 

l l ( Z ?  t )  = P S O ( Z 1  t)+ P O S ( Z ,  t )  12 = i(PS0 - Po,) 7-3 = Pss-Poo.  

The atomic states are labelled 10) (ground) and Is) (excited); the energies of the states 
are Eo,  E, ,  and we define ho, = E ,  - E ,  so that os is the atomic resonance frequency. 
Then o ( z ,  t )  (w,(z,  t ) ,  0, os) and o l ( z ,  t )  = - 2  exo,h- 'E(z,  t ) ;  exOs = ex,, is the matrix 
element of the dipole operator ex. In equation ( 5 )  n is the number density of atoms and 
nexosr,(z, t )  = nP(z, t )  is then the dipole density. Equation (5) thus describes the 
propagation of strictly transverse fields (parallel to x ) :  it neglects (I, 11) Lorentz field 
contributions but this does not affect our conclusion on causality (i) (or on (ii) or (iii)). 
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The equations (4) and (5) follow from comparable operator equations only by decor- 
relating (see I1 and Bullough and Ahmad 1972a) but we believe our argument for 
causality extends to these (with qualifications about radiation damping). We can 
include correlation empirically by including damping and inhomogenous broadening : 
but these features do not really change our conclusions so we ignore them. 

By reintroducing the magnetic field B we can put equation (5) into the quasilinear 
form 

B,-c-1Et-47rnc-1P, = 0 ( 6 4  

E,-c-'B, = 0 (6b) 

and equation (4) is (with p ex,,) 

(r1)t = - W z  

( T ~ ) ~  = msrl +2pEh- ' r 3  

( r 3 ) ,  = -2pEh-'r,. 

Equations (6) and (7) constitute a system of five first order PDE like equation (1) in 
which all the coefficients uvi and b" are constant. They are therefore semilinear. 

The transformation matrix t"' can be derived by standard methods ; but equations (7) 
already take the form of equation (2) (with cy = 0) and it is simpler to combine (6)  and 
(7a) with the definition of P to get (6) in characteristic form directly 

(cE, - E,) + (cB, - B,) = 47rnpwsr2 

- (cE, +E,) + (cB, + B,) = 47rnpcu,r2. 

Equations (7) and (8) are now five equations in characteristic form. The characteristic 
lines, by equation (3), are simply z = i c r , z  = 0 ;  the last represents three coincident 
lines. The characteristic lines are fixed; and an important immediate deduction is that 
the system cannot create optical shocks. We look again at the problem of shock forma- 
tion in § 4. 

3. Causality 

Since we have the characteristics, causality (i) follows without further analysis from a 
standard theorem due to Courant and Lax (1949). We start the system in the definite 
state ( E ( z ,  to), B(z, to) ,  rl(z, to), r2(z ,  to), r3(z,  t o ) )  for some finite range of z (if there is a 
boundary the ri  are zero on the vacuum side and discontinuous across the boundary). 
We want to discover the state at  a later space-time point (z ' ,  t'). Because we have chosen 
initial data on the line t = to which is not a tangent at any point to the characteristics, 
the Courant-Lax theorem applies, and this in a manner best stated by reference to 
figure 1. 

Select from the five one-parameter families of characteristics one from each passing 
through (z', t'). These cut the line t = to at A, B, C in figure 1. The solution at (z', t ')  then 
depends, by the theorem, only on those initial data on t = to between A and B. This 
proves causality (i). Next the extremum characteristics, z = +ct ,  form the boundary of 
the light cone; this proves (ii). 
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7.2’  

Figure 1. Graphical representation of the theorem of Courant and Lax (1949); the line 
z = z’ represents three degenerate characteristics. 

We now prove (iii). By integrating equations (2) we obtain the result for the field 
E(z,  t )  in terms of earlier fields 

1 
2 +-{E(z-ct, O)+E(z+ct, 0)-B(z-ct, O)+B(z+ct, 0)). (9) 

If the pulse penetrates either a quiescent or a fully inverted dielectric, E ,  B and r2  are 
zero before the pulse front (so defining that front). Then a front at z - c t  at t = 0 is at z 
at time t and travels with velocity c as stated in (iii). This result illustrates the point that 
initial discontinuities propagate along characteristics (Ames 1969). 

Most of the current work in resonant nonlinear optics is in fact based on equations (4) 
and ( 5 )  and assumes approximate solutions consisting of slowly varying amplitudes 
modulating forward moving resonant carriers (McCall and Hahn 1969, Lamb 1971, I 
and 11). This eliminates both ‘back scattering’ and the associated characteristic z = - ct. 
Initial data at times t in t ,  > t 2 to which influence fields at (zl, t) now lie in the right 
triangle defined by characteristics z = zl, z - ct = z ,  - ct, and the line t = to : the argu- 
ment for causality still stands and shocks are excluded. This special case has already been 
noted by da Costa (1970). 

4. Wavefronts and optical shocks 

We have now completed the proofs of (i), (ii) and (iii) and the main argument of the paper. 
A number of comments by way of example can usefully be made now. Notice first that 
the velocity of the front is precisely c and that the characteristics z = f ct are those of the 
vacuum even for propagation in a medium. This neither excludes distortionless non- 
linear pulse propagation (as in 11) at pulse velocities I/ < c nor dispersion in linear 
theory. Linear theory actually follows from equations (4) and ( 5 )  by assuming fields so 
weak that r 3 ( ~ ,  t) = r3(z, to) = constant, as we next demonstrate. In this case we may 
then neglect equation (74 and one characteristic but none of our conclusions are 
changed : in particular fronts propagate at c in the dispersive medium. 
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To examine linear theory we shall look for distortionless solutions E(; f VI) ,  
rl(z F Vt), r 2 ( z i  Vt),  of the equations (4) and (5) linearized by r3  = constant = r 3 ( t 0 ) .  
We find that the only distortionless solutions are the trigonometrical functions 
cos o ( z  i Vt),  sin o ( z  F Vt)  which exist for each frequency o. The amplitude E ,  of E is a 
free parameter. Necessary and sufficient conditions for these solutions are then 

8nn e2x&-w,r3(tO) 
2 r n 2 ( o ) -  1 = - 

h(-w,2 --w ) 

ni2(-w) - 1 
4nn ex,, R ,  = E0 

where 

(101 

cos -w(z F V t )  

sin co(z r Vt) 
nz = CV-’  and r1(z+ Vt)  = R,  

These distortionless solutions propagate along lines z = Vt.  In the ‘attenuator‘ the 
dielectric is prepared everywhere with r,(t,) < 0 :  if the atoms are all actually in their 
ground states initially r3(to) = - 1 everywhere and the dielectric is totally quiescent. 
Thus in the attenuator if o < o,, ni2(w) > 1 and I/ < c, the lines z = F Vt lie within the 
light cone. If however either r3 ( t0 )  > 0, as in the ‘amplifier’, where for example 
r3(to)  = + 1 describes a dielectric with all atoms initially inverted, and CO < C O ~ .  or 
r 3 ( t o )  < 0 and U > os, m’(w) < 1, V > c and the lines z = f Vt are outside the light 
cone. 

In practice E(zf Vt) penetrates the dielectric from outside with a front on 
z f ct = constant. Our result (iii) then shows that this propagates with velocity c inside 
the dielectric so that the front of E(z i Vt )  actually distorts. Apparently it steepens if it 
can in an amplifier below resonance since V > c and waves tend to pile up; the front 
flattens in an attenuator since the front outstrips the wave train. The opposite is the case 
for a tail: in the attenuator below resonance, for example, the tail catches up with the 
wave train. Because the characteristics are fixed no discontinuities, that is shocks. can 
build up however. 

These results in a dispersive linear medium are the familiar result that group and 
wave velocities are not synonymous. But an explanation in these terms becomes in- 
adequate in nonlinear theory where the trigonometric functions are replaced (cf 11) by 
Jacobian elliptic functions. Waves are now wave groups and the distortionless condition 
means that every harmonic wave within the group has the same velocity V,  and the 
group velocity is now V. In practice these wave groups, which have ‘infinite support’ (in 
the mathematical sense of this ie do not vanish everywhere outside some finite region of 2 

at fixed t )  could only be approximated experimentally by wave groups of finite support ; 
they have fronts and tails containing discontinuities and these will travel at velocity c. 
One tentative conclusion so far from our numerical work on pulses in the amplifier 
however is that average pulse profiles flatten rather than steepen ; the front can appear as 
a rapidly changing extra peak at the front of the profile. This is probably a nonlinear 
effect. 

Away from resonance the linear medium is dispersionless and m2 is constant. The 
equations (4) and ( 5 )  reduce to the pair of first order PDE equivalent to the second order 
wave equation 
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The characteristics are now z & cm- ‘ t  = constant and these two approximate sets 
of characteristics replace the four characteristic families z +ct = constant, z = 0. 

In the case of nonlinear distortionless pulse propagation there is (cf 11) a ‘refractive 
index’ for each Jacobian elliptic function labelled by its frequency U, and this refractive 
index depends on pulse power. A rough argument now is to say that an equation like (1 1) 
is applicable in the general nonresonant, nonlinear case with m2 a function of E2(z,  t) .  
This system of equations is now nonlinear but no longer semilinear : the characteristics 
are movable and this means (cf eg Forsythe and Wasow 1960) that shock formation is 
possible. 

To see this explicitly note that equation (11) can be set in the form 

cB,+f(E)E, = 0 

cE,+B, = 0 

with f ( E )  
form (assuming f > 0) 

d(EmZ(E))/dE. These equations can immediately be set in the characteristic 

( f 1 / 2 ( E ) E t & ~ E , ) f  f-”2(E)(f’/Z(E)Btf~B,) = 0 ( 1 3 ~ ~  b) 

and characteristic lines are 

dz 
dt 
- = f cf - 1’2(E) (14) 

plainly depending on the solution E.  Integrals along the characteristics themselves are 

G(E(z, 1)) f B(z,  t )  = constant (154 
where 

E ( z , t )  

G(E(z, t ) )  = 1 f112(E’) dE‘. 

Thus in general 

G W ,  t ) )  = 3(G(E(z ,  2 t o ) )  + G(E(z2 9 t o ) )  + B(z1 3 t o )  - B(z2 9 t o )>  (16) 

where (zl, to)  and ( z 2 ,  to )  are points on the intersection of the line t = to  with the two 
characteristics from the different families of (14) passing through ( z ,  t ) .  If, for example, 
we ignore back scattering, that is we ignore one family of characteristics, G(E(z, t ) )  is 
constant along the lines of the second family and E(z, t )  is constant also. The family is 
therefore the family of straight lines 

The members of this family may intersect. 
Intersection between lines through (zo , to)  and (zb, to)  occurs when 

z = z,+cf-”2(E(zo, to) ) ( t - to)  

= z b + ~ j - ’ ~ ~ ( E ( z b ,  r,,))(t-io). 
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This intersection will happen after the time ( t  - to), therefore, if 

Thus adjacent lines cross after a time ( t  - t o )  given by 

d 1 d W 0  9 t o )  

dz0 dzo ’ 

( t - t 0 ) - ’  = ~ - - f - ’ / ~ ( E ( z ~ ,  to)) = -,~f-~”(E(z,, ro))f”(E) 

(20) 
This actually occurs instantaneously, that is on the line t = to, when dE/dzo is un- 
defined (ie it is essentially infinite). The profile for fixed t is now singular but perhaps no 
more than discontinuous. This is usually taken as the criterion for shock formation. 

It is noteworthy that the results (14) to (20) include those obtained by DeMartini et al 
(1967). Suppose m’(E) = mi+AEZ so that f(E) = mi+31EZ. Characteristic lines 
without back scattering are 

(21) 
c(t - t o )  

(mi  + 3iE2(z0, to))’/’ 
(z-zo) = 

These are the characteristics derived by DeMartini et ai (1967) from consideration of 
energy flow. 

There is no actual paradox in the result that equations (12) yield optical shocks 
whilst equations (4) and ( 5 )  do not. Equations (12) do not follow from equations (4) and 
( 5 )  since these equations show that m2, that is P(z, r), is not a function of E(z, t). Instead 
P(z, t )  is a nonlinear functional of E(z, t ) .  It seems to be this, rather than the neglect of 
back scattering, which leads to the two very different conclusions. The conclusion that 
no shocks are possible is based on the more fundamental set of equations and would 
appear to be the proper physical conclusion. However, it is an open question whether it 
is nevertheless good physics to assume equations (12) rather than equations (4) and (5) 
for a description of optical pulse propagation on a scale of say lo-’’ s or longer. The 
natural time scale of equations (4) and ( 5 )  is a reciprocal optical cycle ( -  10- l S  s). A 
shock on a ‘macroscopic’ scale of 10- ’’ s is not necessarily a true shock on a 10- l 5  s 
time scale, nor may the pulse even be particularly steep. 

It remains true that shock formation on a microscopic scale is still possible if there 
are additional sources : Cerenkov radiation for example can be induced from equations 
(4) and ( 5 )  even linearly by incident electrons. Further, once radiation reaction is included, 
the equations (4) and (5 )  are no longer semilinear and true shock formation on a micro- 
scopic scale becomes possible?. It should be added also that because P(z, t )  is a functional 
of E(z,  t ) ,  m2 cannot be dispersionless. DeMartini et al (1967) note that dispersion 
smooths out their shocks. Dispersion also complicates and apparently destroys the 
linear optical shock accompanying Cerenkov radiation (J D Gibbon 1971, private 
communication). 

t Within semiclassical theory one particle radiation is nonlinear as discussed by Stroud and Jaynes (1970) 
and Crisp and Jaynes (1969). The solution of nonlinear second quantized theory is identical with that of 
linear theory, however (Bullough and Ahmad 1972b). Nonlinear damping in a dielectric of many coupled 
atoms needs separate discussion : Dicke (1954) described ‘super-radiant’ enhancement of the radiation rate 
by coherent coupling of the spontaneous emission from many atoms and envisaged (Dicke 1964) an ‘optical 
bomb’ exhibited as some form of optical shock. On the other hand inclusion of semiclassical nonlinear damp- 
ing for an inverted (amplifying) many atom dielectric offers the possibility of a different solution, namely of a 
distortionless self-sustained (ie ufldamped) oscillatory solution (Bullough and Ahmad 1972b). 
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5. Initial conditions 

We now look at  the problem of initial data. Nonlinear theories based on equations (4) 
and ( 5 )  are unusual amongst physical theories in that the question of a correct choice of 
initial data is an important one. Most current theoretical conclusions on short pulses 
are based on approximations to equations (4) and (5 )  applied to nonphysical infinite 
dielectrics (eg Icsevgi and Lamb 1969, Lamb 1971, Hopf and Scully 1969). Since all 
physical dielectrics are finite with surfaces, any self-consistent system of fields and dipoles 
inside an infinite dielectric may be impossible to introduce into a finite dielectric. The 
problem of pulse speeds V > c in an amplifier (eg that of the hyperbolic secant pulse 
modulating a carrier (McCall and Hahn 1969)) is typical of infinite pulses and infinite 
dielectrics. Icsevgi and Lamb (1969) and da Costa (1970) correctly analyse this case 
and our result (iii) shows within either linear or nonlinear theory that if the pulse has 
finite support (that is a physical or at least a numerically calculable pulse) the front 
travels at precisely velocity c. But we must add that it is dangerous to provide initial 
data partly or wholly on characteristics (as eg Icsevgi and Lamb 1970, Burnham and 
Chiao 1969): a condition for the Courant-Lax theorem is broken, the proof of causality 
(i) does not follow and even uniqueness of the solution becomes suspect. 

In the case where initial data lie along one or more characteristics, uniqueness can 
be proved only in certain special cases: in some cases uniqueness can be disproved. 
Ames (1969) gives a discussion for two quasilinear PDE with two characteristics. The 
solution is not unique for initial data given only on one characteristic (cf Icsevgi and 
Lamb 1969 QVA). Uniqueness can be restored by giving data consistently on both 
characteristics. For more than two equations the only theorem we know is due to 
Hormander (1964) and states that as above initial data given only on one characteristic 
are insufficient for uniqueness. 

6. Some numerical results 

The problems of initial data discussed in Q 5 do not arise for initial data given on t = t o  
and for physical (ie finite) dielectrics. We have integrated (7) and (8) numerically, with 
pulses entering dielectrics confined to z > 0 or 0 < z < a (slab), using finite difference 
methods on the grid of characteristic lines (cf Ames 1969). It seems worthwhiIe quoting 
here some preliminary numerical results. 

6.1. Buck scattering 

An amplifying dense dielectric can back scatter a fairly large fraction of the incident 
field amplitude. This result is important, for back scattering is certainly ignored in 
previous work on resonant media (cf Lamb 1971). Of course a linear medium may back 
scatter up to 100 % of the incident field : our nonlinear example is 15 back scattering 
of amplitude for atoms ~ m - ~ .  The pulse is exceptionally short (- 10- l4 s) and very 
intense (10" Wcm-2 s-'), but since pulse velocities depend on the power of the pulse 
we can expect a reduction in back scattering as compared to the linear medium. 

6.2. D c f i e l d  

The nonlinear optical equations have analytical steady-state DC solutions. When an 
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external DC field is applied to a dielectric there will be a transition period during which 
the dielectric evolves from the quiescent state to the equilibrium DC state. We find that 
during this transition period the dielectric emits light at  resonant frequency?. 

As a numerical example, a DC field of 3 x lo6 V cm- ' applied to a slab of dielectric of 
atomic density lo2' cm-3 and thickness 3 x cm produced an output wave of 
E,{ 1 +sin o , ( t  - z/c)} with E ,  constant over about 6 x cm and equal to about 2.4 0; 
of the applied DC field. The result needs further study. 

6.3. Sech pulses 

Although the hyperbolic secant pulse solution of I and I1 propagates without distortion 
(as predicted) in an attenuator, the same pulse with any small imperfections (-0.1 %) 
breaks up rapidly in an amplifier ; the pulse front travels at c precisely and no physical 
meaning can be attached to pulse speeds greater than c in agreement with (ii) and (iii) 
above (from I and I1 we know that a perfect hyperbolic secant which has infinite support, 
will travel in an amplifier without distortion at a speed I/ > c). Again the pulse is very 
short ( -  10- l4 s). 

6.4. Arbitrary pulses 

Pulses which are not travelling wave solutions of the equations (7) and (8) break up into 
approximately sinusoidal forms, with no sign of evolution to a stable form within the 
short timescalein whichwehaveobserved them(- s). Atlowdensities(lO'* cm-3) 
the pulse is attenuated slowly : each atom 'sees' the same pulse (cf Burnham and Chiao 
1969) and the pulse leaves a trail of constant rj(z, t )  over a relatively large distance. 
(Recall that r 3  is a measure of the atomic inversion.) At higher densities cm-3) 
the pulse is attenuated rapidly and this effect does not occur. The density n - 10" cm- 
also heralds the breakdown of the slowly varying amplitude approximation in the 
theory of self-induced transparency (Bullough and Ahmad 1972a). 

6.5. Colliding pulses 

The negative but perhaps surprising result that two ultrashort optical pulses traversing 
a dielectric slab in opposite directions may do so without significant interaction during 
overlap at particle densities as high as ~ m - ~ .  (This may be a result of the very 
short collision time.) There appears to be a direct analogy between these (sech) pulses 
and the 'soliton' pulses discovered by Kruskal and Zabusky (Zabusky 1967) in their 
work on the anharmonic lattice and the Korteweg-de Vries equation. 
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